Release of hydrogen molecules from the photodissociation of amorphous solid water and polycrystalline ice at 157 and 193 nm.
نویسندگان
چکیده
The production of H(2) in highly excited vibrational and rotational states (v=0-5, J=0-17) from the 157 nm photodissociation of amorphous solid water ice films at 100 K was observed directly using resonance-enhanced multiphoton ionization. Weaker signals from H(2)(v=2,3 and 4) were obtained from 157 nm photolysis of polycrystalline ice, but H(2)(v=0 and 1) populations in this case were below the detection limit. The H(2) products show two distinct formation mechanisms. Endothermic abstraction of a hydrogen atom from H(2)O by a photolytically produced H atom yields vibrationally cold H(2) products, whereas exothermic recombination of two H-atom photoproducts yields H(2) molecules with a highly excited vibrational distribution and non-Boltzmann rotational population distributions as has been predicted previously by both quantum-mechanical and molecular dynamics calculations.
منابع مشابه
A desorption mechanism of water following vacuum-ultraviolet irradiation on amorphous solid water at 90 K.
Following 157 nm photoexcitation of amorphous solid water and polycrystalline water ice, photodesorbed water molecules (H(2)O and D(2)O), in the ground vibrational state, have been observed using resonance-enhanced multiphoton ionization detection methods. Time-of-flight and rotationally resolved spectra of the photodesorbed water molecules were measured, and the kinetic and internal energy dis...
متن کاملHydrogen atom formation from the photodissociation of water ice at 193 nm.
The TOF spectra of photofragment hydrogen atoms from the 193 nm photodissociation of amorphous ice at 90-140 K have been measured. The spectra consist of both a fast and a slow components that are characterized by average translational energies of 2k(B)T(trans)=0.39+/-0.04 eV (2300+/-200 K) and 0.02 eV (120+/-20 K), respectively. The incident laser power dependency of the hydrogen atom producti...
متن کاملRole of OH radicals in the formation of oxygen molecules following vacuum ultraviolet photodissociation of amorphous solid water.
Photodesorption of O(2)(X (3)Σ(g) (-)) and O(2)(a (1)Δ(g)) from amorphous solid water at 90 K has been studied following photoexcitation within the first absorption band at 157 nm. Time-of-flight and rotational spectra of O(2) reveal the translational and internal energy distributions, from which production mechanisms are deduced. Exothermic and endothermic reactions of OH+O((3)P) are proposed ...
متن کاملSurface abundance change in vacuum ultraviolet photodissociation of CO2 and H2O mixture ices.
Photodissociation of amorphous ice films of carbon dioxide and water co-adsorbed at 90 K was carried out at 157 nm using oxygen-16 and -18 isotopomers with a time-of-flight photofragment mass spectrometer. O((3)P(J)) atoms, OH (v = 0) radicals, and CO (v = 0,1) molecules were detected as photofragments. CO is produced directly from the photodissociation of CO(2). Two different adsorption states...
متن کاملTranslational and internal energy distributions of methyl and hydroxyl radicals produced by 157 nm photodissociation of amorphous solid methanol.
Methanol is typically observed within water-rich interstellar ices and is a source of interstellar organic species. Following the 157 nm photoexcitation of solid methanol at 90 K, desorbed CH(3)(v=0) and OH(v=0,1) radicals have been observed in situ, near the solid surface, using resonance-enhanced multiphoton ionization (REMPI) detection methods. Time-of-flight and rotationally resolved REMPI ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 129 4 شماره
صفحات -
تاریخ انتشار 2008